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Abstract

Failure of a safety-critical application on an embedded processor can lead to severe damage or even
loss of life. Here we are concerned with two kinds of failure: stack overflow, which usually leads to run-
time errors that are difficult to diagnose, and failure to meet deadlines, which is catastrophic for systems
with hard real-time characteristics. Classical validation methods like code review and testing with repeated
measurements require a lot of effort, are expensive, and do not really help in proving the absence of such
errors.AbsInt ’s toolsStackAnalyzer andaiT (timing analyzer) provide a solution to this problem. They
use abstract interpretation as a formal method that allows to obtain statements valid for all program runs
with all inputs.

1 Introduction

The use of safety-critical embedded software in the automotive and avionics industries is increasing rapidly.
Failure of such a safety-critical embedded system may result in the loss of life or in large damages. Also
for non-safety-critical applications, software failure may necessitate expensive updates. Therefore, utmost
carefulness and state-of-the-art machinery have to be applied to make sure that an application meets all re-
quirements. To do so lies in the responsibility of the system designer(s).

Traditional certification standards evaluate the quality of a software system by assessing the quality of the
development process that produced it. Yet the benefit of such a process-based assurance is limited. Therefore,
switching to a product-based assurance process is advised, which judges the quality of a software product by
examining its properties.

Classical software validation methods like code review and testing with debugging are very expensive and
cannot really guarantee the absence of errors. Formal verification methods provide an alternative, in partic-
ular for safety-critical applications. One such method isabstract interpretation[2], which allows to obtain
statements that are valid for all program runs with all inputs. Such statements may be absence of violations
of timing or space constraints, or absence of runtime errors. For example, stack overflow can be detected by
AbsInt ’s StackAnalyzer, and violations of timing constraints are found byAbsInt ’s aiT tool [5] that deter-
mines upper bounds for the worst-case execution times of the tasks of an application. Among other things,
these tools perform avalue analysisas the principal source of information about the values manipulated by
the analyzed program.

2 Value Analysis

Value analysis tries to determine the values stored in the processor’s memory for every program point and
execution context. Often, it is sufficient to restrict value analysis to the processor registers, but sometimes, it
is useful to get information about main memory as well.

1

http://www.absint.com


Value analysis is a static analysis method producing results valid for every program run and all inputs to the
program. Therefore, it cannot always predict an exact value for a memory location, but determinesabstract
valuesinstead that stand for sets of concrete values. More precisely, it computes for each program point and
execution context anabstract statethat maps memory locations to abstract values. Each machine instruction
is modeled by a transfer function mapping input states to output states in a way that is compatible with the
semantics of the instruction. At control-flow joins, the incoming abstract states are combined into a single
outgoing state using a combination function. Because of the presence of loops, transfer and combination
functions must be applied repeatedly until the system of abstract states stabilizes. Termination of this fixed-
point iteration is ensured on a theoretical level by the monotonicity of transfer and combination functions
and the fact that a memory location can only hold finitely many different values. Practically, value analysis
becomes only efficient by applying suitable widening and narrowing operators as proposed in [2].

There are several variants of value analysis depending on what kinds of abstract values are used. The simplest
form of value analysis isconstant propagation: an abstract value is either a single concrete value or the
statement that no information about the value is known. A more elaborate form of value analysis computes safe
lower and upper bounds for the possible concrete values, i.e. abstract values are intervals that are guaranteed
to contain the exact values.

All the value analysis variants described above determine sets of possible values for individual memory loca-
tions without any relationship between these sets. Yet if an unknown value is moved from registerr1 to r2 ,
then both registers contain unknown values afterward, but these values are known to be equal. So a possible
extension of value analysis may record known equalities between values, or more generally, upper and lower
bounds for their differences, or even more generally, arbitrary linear constraints between values.

Value analysis, even in its simple form as interval analysis, has various applications as an auxiliary method
providing input for other analysis tasks. Some of these applications are listed in the sequel.

3 Stack Usage Analysis

A possible cause of catastrophic failure is stack overflow that usually leads to run-time errors that are difficult
to diagnose. The problem is that the memory area for the stack usually must be reserved by the programmer.
Underestimation of the maximum stack usage leads to stack overflow, while overestimation means wasting
memory resources. Measuring the maximum stack usage with a debugger is no solution since one only obtains
a result for a single program run with fixed input. Even repeated measurements with various inputs cannot
guarantee that the maximum stack usage is ever observed. Some, but not all compilers provide information
about stack usage, but this requires the availability of the source code, and the information becomes invalid
when the generated code is optimized by hand or by some automatic tool.

AbsInt ’s tool StackAnalyzer provides a solution to this problem: By concentrating on the value of the stack
pointer during value analysis, the tool can figure out how the stack increases and decreases along the various
control-flow paths. This information can be used to derive the maximum stack usage of the entire task.

The results ofStackAnalyzer are presented as annotations in a combined call graph and control-flow graph.
Figure1 shows the call graph of a small application, with stack analysis results at routines and for the entire
application (at the top). On this level, the results of stack analysis are displayed in boxes located to the right
of the boxes representing the routines of the application. Each result box carries two results: aglobal result,
coming first, and alocal result, following in angular brackets. Each result is an interval of possible stack
levels. Intervals of the form[n,n] are abbreviated ton.

The local result at a routineR indicates the stack usage inR considered on its own: It is an interval showing
the possible range of stack levels within the routine, assuming value 0 at routine entry. The local result for
a routine is derived from the results at individual instructions, which are shown in Figure2 for one of the
routines of this example.

The global result for routineR indicates the stack usage ofR in the context of the entire application. It is
an interval providing bounds for the stack level while the processor is executing instructions ofR, for all call
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Figure 1: Call graph with stack analysis results

Figure 2: Individual instructions with stack analysis results

paths from the entry point toR. Thus, the global result at routineR does not include the stack usage of the
routines called byR.

StackAnalyzer provides automatic tool support to calculate precise information on the stack usage. This
not only reduces development effort, but also helps to prevent runtime errors due to stack overflow. Critical
program sections are easily recognized thanks to color coding. The analysis results thus provide valuable
feedback in optimizing the stack usage of an application. The predicted worst-case stack usages of individual
tasks in a system can be used in an automated overall stack usage analysis for all tasks running on one
Electronic Control Unit, as described in [7] for systems managed by an OSEK/VDX real-time operating
system.
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4 WCET Analysis: Worst-Case Execution Time Prediction

Many tasks in safety-critical embedded systems have hard real-time characteristics. Failure to meet deadlines
may be as harmful as producing wrong output or failure to work at all. Yet the determination of the Worst-Case
Execution Time (WCET) of a task is a difficult problem because of the characteristics of modern software and
hardware [17].

Embedded control software (e.g., in the automotive industries) tends to be large and complex. The software in
a single electronic control unit typically has to provide different kinds of functionality. It is usually developed
by several people, several groups or even several different providers. Code generator tools are widely used.
They usually hide implementation details to the developers and make an understanding of the timing behavior
of the code more difficult. The code is typically combined with third party software such as real-time operating
systems and/or communication libraries.

Concerning hardware, there is typically a large gap between the cycle times of modern microprocessors and the
access times of main memory. Caches and branch target buffers are used to overcome this gap in virtually all
performance-oriented processors (including high-performance micro-controllers and DSPs). Pipelines enable
acceleration by overlapping the executions of different instructions. Consequently the execution behavior of
the instructions cannot be analyzed separately since it depends on the execution history.

Cache memories usually work very well, but under some circumstances minimal changes in the program
code or program input may lead to dramatic changes in cache behavior. For (hard) real-time systems, this
is undesirable and possibly even hazardous. Making the safe yet—for the most part—unrealistic assumption
that all memory references lead to cache misses results in the execution time being overestimated by several
hundred percent.

The widely used classical methods of predicting execution times are not generally applicable. Software moni-
toring or the dual-loop benchmark change the code, which in turn has impact on the cache behavior. Hardware
simulation, emulation, or direct measurement with logic analyzers can only determine the execution time for
one input. They cannot be used to infer the execution times for all possible inputs in general.

Furthermore, the execution time depends on the processor state in which the execution is started. Modern
processor architectures often violate implicit assumptions on the worst start state. The reason is that they
exhibit timing anomalies as defined in [9], which consist of a locally advantageous situation, e.g., a cache hit,
resulting in a globally larger execution time. As also demonstrated in [9], processor pipelines may exhibit
so-called domino effects where—for some special pieces of code—the difference between two start states of
the pipeline does not disappear over time, but leads to a difference in execution time that cannot be bounded
by a constant.

4.1 Structure of WCET Computation

Abstract interpretation can be used to efficiently compute a safe approximation for all possible cache and
pipeline states that can occur at a program point. These results can be combined with ILP (Integer Linear
Programming) techniques to safely predict the worst-case execution time and a corresponding worst-case
execution path. This approach can help to overcome the challenges listed above.

AbsInt ’s WCET toolaiT determines the WCET of a program task in several phases [5] (see Figure3):

• CFG Building decodes, i.e. identifies instructions, and reconstructs the control-flow graph (CFG) from
a binary program;

• Value Analysiscomputes value ranges for registers and memory cells, and address ranges for instructions
accessing memory;

• Loop Bound Analysisdetermines upper bounds for the number of iterations of simple loops;

• Cache Analysisclassifies memory references as cache misses or hits [4];

• Pipeline Analysispredicts the behavior of the program on the processor pipeline [8];

• Path Analysisdetermines a worst-case execution path of the program [16].
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Figure 3: Phases of WCET computation

Separating WCET determination into several phases makes it possible to use different methods tailored to the
subtasks [16]. Value analysis, cache analysis, and pipeline analysis are based on abstract interpretation [2].
Integer linear programming is used for path analysis.

aiT allows to inspect the timing behavior of (time-critical parts of) program tasks. The analysis results are
determined without the need to change the code and hold for all executions (for the intrinsic cache and pipeline
behavior). aiT takes into account the combination of all the different hardware characteristics while still
obtaining tight upper bounds for the WCET of a given program in reasonable time.

4.2 Reconstruction of the Control Flow from Binary Programs

The starting point of our analysis framework (see Figure3) is a binary program and a so-calledAIS filecon-
taining additional user-provided information about numbers of loop iterations, upper bounds for recursion,
etc. In the first step a decoder reads the executable and reconstructs the control flow [13, 14]. This requires
some knowledge about the underlying hardware, e.g., which instructions represent branches or calls. The
reconstructed control flow is annotated with the information needed by subsequent analyses and then trans-
lated into CRL (Control-Flow Representation Language)—a human-readable intermediate format designed to
simplify analysis and optimization at the executable/assembly level. This annotated control-flow graph serves
as the input for micro-architecture analysis.

The decoder can find the target addresses of absolute andpc -relative calls and branches, but may have dif-
ficulties with target addresses computed from register contents. Thus,aiT uses specialized decoders that are
adapted to certain code generators and/or compilers. They usually can recognize branches to a previously
stored return address, and know the typical compiler-generated patterns of branches via switch tables. Yet
non-trivial applications may still contain some computed calls and branches (in hand-written assembly code)
that cannot be resolved by the decoder; these unresolved computed calls and branches are documented by ap-
propriate messages and require user annotations. Such annotations may list the possible targets of computed
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calls and branches, or tell the decoder about the address and format of an array of function pointers or a switch
table used in the computed call or branch.

4.3 Value Analysis

Value analysis as described in Section2 tries to determine the values in the processor memory for every
program point and execution context. Its results are used to determine possible addresses of indirect memory
accesses—important for cache analysis—and in loop bound analysis. They are usually so good that only a
few indirect accesses cannot be determined exactly. Address ranges for these accesses may be provided by
user annotations.

4.4 Loop Bound Analysis

WCET analysis requires that upper bounds for the iteration numbers of all loops be known.aiT tries to
determine the number of loop iterations byloop bound analysis, but succeeds in doing so for simple loops
only. Bounds for the iteration numbers of the remaining loops must be provided as user annotations.

aiT employs two different methods for loop bound analysis. The older method relies on a combination of
value analysis and pattern matching, which looks for typical loop patterns. In general, these loop patterns
depend on the code generator and/or compiler used and sometimes even on the optimization level.

The newer method described in [3] uses an interprocedural data-flow analysis to derive loop invariants from the
semantics of the instructions. This new analysis does not depend on the compiler used or optimization level,
but only on the semantics of the instruction set for the target machine. It is able to handle loops with multiple
exits and multiple modifications of the loop counter per iteration including modifications in procedures called
from the loop.

4.5 Cache Analysis

Cache analysis classifies the accesses to main memory. The analysis in our tool is based upon [4], which han-
dles analysis of caches with LRU (Least Recently Used) replacement strategy. However, it had to be modified
to reflect the non-LRU replacement strategies of common microprocessors: the pseudo-round-robin replace-
ment policy of the ColdFire MCF 5307, and the PLRU (Pseudo-LRU) strategy of the PowerPC MPC 750 and
755. The modified algorithms distinguish between sure cache hits and unclassified accesses. The deviation
from perfect LRU is the reason for the reduced predictability of the cache contents in case of ColdFire 5307
and PowerPC 750/755 compared to processors with perfect LRU caches [6].

4.6 Pipeline Analysis

Pipeline analysis models the pipeline behavior to determine execution times for sequential flows (basic blocks)
of instructions, as done in [11]. It takes into account the current pipeline state(s), in particular resource
occupancies, contents of prefetch queues, grouping of instructions, and classification of memory references
by cache analysis. The result is an execution time for each basic block in each distinguished execution context.

Like value and cache analysis, pipeline analysis is based on the framework of abstract interpretation. Pipeline
analysis of a basic block starts with a set of pipeline states determined by the predecessors of the block and
lets this set evolve from instruction to instruction by a kind of cycle-wise simulation of machine instructions.
In contrast to a real simulation, the abstract execution on the instruction level is in general non-deterministic
since information determining the evolution of the execution state is missing, e.g., due to non-predictable
cache contents. Therefore, the abstract execution of an instruction may cause a state to split into several
successor states. All the states computed in such tree-like structures form the set of entry states for the
successor instruction. At the end of the basic block, the final set of states is propagated to the successor
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blocks. The described evolution of state sets is repeated for all basic blocks until it stabilizes, i.e. the state sets
do not change any more.

The output of pipeline analysis is the number of cycles a basic block takes to execute, for each context,
obtained by taking the upper bound of the number of simulation cycles for the sequence of instructions for
this basic block. These results are then fed into path analysis to obtain the WCET for the entire task.

4.7 Path Analysis

Using the results of the micro-architecture analyses, path analysis determines a safe estimate of the WCET.
The program’s control flow is modeled by an integer linear program [16, 15] so that the solution to the objec-
tive function is the predicted worst-case execution time for the input program. A special mapping of variable
names to basic blocks in the integer linear program enables execution and traversal counts for every basic
block and edge to be computed.

4.8 Analysis of Loops and Recursive Procedures

Loops and recursive procedures are of special interest since programs spend most of their runtime there.
Treating them naively when analyzing programs for their cache and pipeline behavior results in a high loss of
precision.

Frequently the first execution of the loop body loads the cache, and subsequent executions find most of their
referenced memory blocks in the cache. Because of speculative prefetching, cache contents may still change
considerably during the second iteration. Therefore, the first few iterations of the loop often encounter cache
contents quite different from those of later iterations. Hence it is useful to distinguish the first few iterations
of loops from the others. This is done in the VIVU approach (virtual inlining, virtual unrolling) [10].

Using upper bounds on the number of loop iterations, the analyses can virtually unroll not only the first few
iterations, but all iterations. The analyses can then distinguish more contexts and the precision of the results
is increased—at the expense of higher analysis times.

4.9 Usage of aiT

The techniques described above have been incorporated intoAbsInt ’s aiT WCET analyzer tools. They get as
input an executable, user annotations, a description of the (external) memories and buses (i.e. a list of memory
areas with minimal and maximal access times), and a task (identified by a start address). A task denotes a
sequentially executed piece of code (no threads, no parallelism, and no waiting for external events). This
should not be confused with a task in an operating system that might include code for synchronization or
communication.

The WCET analyzers compute an upper bound of the runtime of the task (assuming no interference from the
outside). Effects of interrupts, IO and timer (co-)processors are not reflected in the predicted runtime and have
to be considered separately (e.g., by a quantitative analysis).

The task WCETs predicted byaiT can be used to determine an appropriate scheduling scheme for the tasks
and to perform an overall schedulability analysis in order to guarantee that the application meets all timing
constraints (also calledtiming validation) [12]. Some real-time operating systems offer tools for schedulability
analysis, but all these tools require the WCETs of tasks as input.

4.10 Visualization of aiT’s Results

aiT’s results are written into a report file. In addition,aiT produces a picture description that can be visualized
by theaiSeetool [1] to view detailed information delivered by the analysis.
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Figure 4: Call graph and control-flow graph with WCET results

Figure 5: Possible pipeline states in a basic block

Figure4, left, shows the graphical representation of the call graph for some small example. The calls (edges)
that contribute to the worst-case runtime are marked by the color red. The computed WCET is given in CPU
cycles and in microseconds provided that the cycle time of the processor has been specified.

Figure4, right, shows the basic block graph of a loop. The numbermax # describes the maximal number of
traversals of an edge in the worst case, whilemax t describes the maximal execution time of the basic block
from which the edge originates (taking into account that the basic block is left via the edge). The worst-case
path, the iteration numbers and timings are determined automatically byaiT.

Figure5 shows the possible pipeline states for a basic block in this example. Such pictures are shown byaiT
upon special demand. The large dark grey boxes correspond to the instructions of the basic block, and the
smaller rectangles in them stand for individual pipeline states. Their cyclewise evolution is indicated by the
strokes connecting them. Each layer in the trees corresponds to one CPU cycle. Branches in the trees are
caused by conditions that could not be statically evaluated, e.g., a memory access with unknown address in
presence of memory areas with different access times. On the other hand, two pipeline states fall together
when details they differ in leave the pipeline. This happened for instance at the end of the second instruction,
reducing the number of states from four to three.

Figure6 shows the top left pipeline state from Fig.5 in greater magnification. It displays a diagram of the
architecture of the CPU (in this case a PowerPC 555) showing the occupancy of the various pipeline stages
with the instructions currently being executed.
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Figure 6: Individual pipeline state

5 Dependence on Target Architectures

There areaiT versions for PowerPC MPC 555, 565, and 755, ColdFire 5307, ARM7 TDMI, HCS12/STAR12,
TMS320C33, C166/ST10, Renesas M32C/85, and Tricore 1.3.

Decodersare automatically generated from processor specifications defining instruction formats and operand
meaning. The CRL format used for describing control-flow graphs is machine-independent.Value Analysis
must interpret the operations of the target processor. Hence, there is a separate value analyzer for each target,
but features shared by many processors (e.g., branches based on condition bits) allowed for considerable code
sharing among the various value analyzers.

There is only one cache analyzer with a fixed interface to pipeline analysis. It is parameterized on cache size,
line size, associativity, and replacement strategy. Each replacement strategy supported byaiT is implemented
by a table for line age updates that is interpreted by the cache analyzer.

The pipeline analyzers are the most diverse part ofaiT. The supported target architectures are grouped accord-
ing to the complexity of the processor pipeline. For each group a common conceptual and coding framework
for pipeline analysis has been established, in which the actual target-dependent analysis must be filled in by
manual coding.

6 Precision of aiT

Since the real WCET is not known for typical real-life applications, statements about the precision ofaiT are
hard to obtain. For an automotive application running on MPC 555, one ofAbsInt ’s customers has observed
an overestimation of 5–10% when comparingaiT’s results and the highest execution times observed in a
series of measurements (which may have missed the real WCET). For an avionics application running on
MPC 755, Airbus has noted thataiT’s WCET for a task typically is about 25% higher than some measured
execution times for the same task, the real but non-calculable WCET being in between. Measurements at
AbsInt have indicated overestimations ranging from 0% (cycle-exact prediction) till 10% for a set of small
programs running on M32C, TMS320C33, and C16x/ST10. Table1 shows the results for C166. The analysis
times were moderate—a few seconds till about 3 minutes for edn.
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Table 1: Precision ofaiT for some C166 programs

Example from external RAM from flash
measuredpredicted over- measuredpredicted over-

Program Size cycles cycles estimation cycles cycles estimation
fac 2.9k 949 960 1.16 % 810 832 2.72 %
fibo 3.4k 2368 2498 5.49 % 2142 2228 4.01 %
coverc1 16k 5670 5672 0.04 % 3866 4104 6.16 %
coverc 4.3k 7279 7281 0.03 % 5820 6202 6.56 %
morswi 5.9k 17327 17332 0.03 % 8338 8350 0.14 %
coverc2 24k 18031 18178 0.82 % 12948 14054 8.54 %
swi 24k 18142 18272 0.72 % 13330 14640 9.83 %
edn 13k 262999 267643 1.77 % 239662 241864 0.92 %

7 Conclusion

Tools based on abstract interpretation can perform static program analysis of embedded applications. Their
results hold for all program runs with arbitrary inputs. Employing static analyzers is thus orthogonal to
classical testing, which yields very precise results, but only for selected program runs with specific inputs.

aiT allows to inspect the timing behavior of (time-critical parts of) program tasks. It takes into account
the combination of all the different hardware characteristics while still obtaining tight upper bounds for the
WCET of a given program in reasonable time.StackAnalyzer andaiT are used among others by Airbus in
the development of various safety-critical applications for the A380. They will be used as verification tools
in the sense of DO178b. The qualification requirements for such verification tools are lighter than for code
generation tools. In contrast to code generation tools, verification tools cannot introduce any errors into the
safety-critical system. Failure of a verification tool may only lead to an overlooked error.

In a less regulated application area,StackAnalyzer and aiT can be used for optimizing the system. For
instance, the results ofStackAnalyzer are useful when optimizing the assignment of priorities to tasks in
order to minimize the memory consumption in an OSEK-like operating system. The results ofaiT can be
used to find an optimal schedule in a time-triggered operating system.

The usage of static analyzers enables one to develop complex systems on state-of-the-art hardware, increases
safety, and saves development time. Precise stack usage and timing predictions enable the most cost-efficient
hardware to be chosen.
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