
manuscript No.
(will be inserted by the editor)

Lili Tan

The Worst Case Execution Time Tool Challenge 2006:
Technical Report for the External Test

Abstract The first Worst Case Execution Time WCET
Tool Challenge, performed in 2006, attempted to evalu-
ate the state-of-the-art in timing analysis for real-time
systems and to encourage research and activities in the
WCET community. The challenge assesses academic and
commercial WCET tools. It comprises two approaches:
self-evaluation by the respective tool developers and ex-
ternal evaluation by an independent and neutral test per-
son. During the evaluation period, the test person visited
the tool developers to test the tools and to perform mea-
surements on-site. This paper describes the procedure
and the results of the external evaluation.

Keywords Timing Analysis · Worst Case Execution
Time · WCET · Hard Real Time

1 Introduction

The Worst-Case Execution Time (WCET) refers to the
maximum execution time of certain program executables
on certain target processors [1]. WCETs are often used
for schedulability analysis and timing assurance in real-
time and embedded systems, especially in safety-critical
hard real-time systems, like avionic flight control or au-
tomatic auto brake control systems. Generally, WCETs
are derived from the prediction of the upper bounds of
execution times of program tasks. Safe and precise pre-
dictions of these upper bounds are the tasks of WCET
tools. Reductions in overestimation improve the preci-
sions of prediction and indicate the quality of a WCET
tool.

The first Worst Case Execution Time Tool Challenge
invited all tool providers to submit their tools to evaluate

This work was supported by the ARTIST2 European Network
of Excellence.

L. Tan
ICB/Computer Science, University of Duisburg-Essen
Tel.: +49 -201-183 2340
Fax: +49 -201-183 2149
E-mail: lili.tan@icb.uni-due.de

the state-of-the-art in timing analysis for real-time sys-
tems to encourage WCET research and activities in the
WCET community [2]. The working group selected a test
framework and a set of benchmark programs. A neutral
person was chosen to conduct an unbiased evaluation.
This is necessary for the evaluation of WCET tools since
an automatic evaluation is not fully realized, and human
efforts are still required [1]. In particular, the evaluation
of tool-usability requires an externally conducted test.

The author, Lili Tan from the University of Duisburg-
Essen has been assigned by the WCET Tool Challenge
Working Group (WWG) to do the external test. Previous
to this challenge, she had gained experience with the
evaluation of industry-strength WCET tools for avionic
applications in a high-lift flap control system. In such
a system, domain standards, together with model-based
software development environments using Matlab/Simu-
link and SCADE for automatic code generation, need to
be taken into consideration.

The external test was performed in cooperation with
the WWG. It started on September 29th and ended on
November 13th 2006. During this time period, the author
tested all of the tools and visited all tool providers except
one who registered late. The test and its results were pre-
sented on November 17th at the ISoLA 2006 conference
in Cyprus [3]. The results of the self-evaluation part of
the WCET Tool Challenge are presented in [4].

This paper describes the external tests performed in
the challenge and the test results obtained. The remain-
der of the paper is organized as follows. The test frame-
work is introduced in Section 2. The implementation of
the external test work is described in Section 3. The test
results are presented and the usability of tools is assessed
in Section 4. Section 5 concludes.

2 Test Framework

This section gives an overview of the general framework
under which the submitted tools were evaluated.



2 Lili Tan

2.1 WCET Tools under Test, Variants, and Updates

All of the WCET tools that entered the challenge have
been registered for the external test. We briefly describe
these tools in the sequence of registration. aiT WCET
Analyzer (aiT) is a software product of the company Ab-
sInt Angewandte Informatik GmbH [5]. The technology
used in aiT was initially developed at Saarland Univer-
sity. Since 1998, AbsInt and Saarland University have
been developing aiT jointly. The following variants par-
ticipated: aiT for the Infineon C16X processor and with
the Tasking compiler, aiT for ARM7 (TMS470) and the
TI v2.17 compiler, and aiT for PowerPC MPC565 and
the Diab v5.3 compiler.

Bound-T is a software product of the company Tido-
rum Ltd, which provided three test variants: Bound-T
for Renesas H8/300 and the GCC compiler as well as
the IAR compiler, Bound-T for SPARC V7/V8 (ERC32)
and the BCC compiler [6].

The Swedish Worst Case Execution Time Tool (ab-
breviation: SWEET), is a research prototype provided by
Mälardalen University [7]. SWEET supports the target
processor ARM9 and the CtoNIC compiler.

MTime is a research prototype from the Real-Time
Systems Group at Vienna University of Technology (TU-
Vienna). MTime supports processor Motorola HCS12
with the COSMIC compiler [8] .

Chronos is a research prototype and GNU open source
software developed by the National University of Singa-
pore. Chronos is designed for SimpleScalar and uses the
GCC compiler. It allows three types of configurations
in the processor, i.e. Simple in-order, Complex in-order,
and Complex out-of-order [9].

Tool developers were allowed to develop their tools
and to submit their new improved software updates dur-
ing the challenge. All updates and test variants are listed
in Table 1.

2.2 Programs under Test

The WWG selected a set of 15 programs from the Mälar-
dalen WCET benchmark and two PapaBench bench-
marks as the basis for the evaluation [2], [7], and [10].
The programs are available in C source code. The C
programs were compiled by the participants with the re-
spective compilers.

The selected benchmarks consist of programs with
the following features: loops, nested loops, and recursion.
Details about the complexity of the benchmark test pro-
grams is described in [4] and [7].

2.3 Test Scope

The WWG decided that the tools should be tested with
respect to three aspects, namely flow analysis, required

user interaction, and performance [2]. The test was also
expected to run with a three-round procedure, i.e. with-
out manual annotation, minimal set of annotations, and
finally an optimal set of annotations to improve the WCET
quality to the best level [2].

– By means of the flow analysis, the ability of the tools
in analyzing timing features of software programs are
discussed in [4].

– In the first-round run without manual annotation,
the percentage of input programs that a tool can an-
alyze and deliver test results are counted and the au-
tomation rates are derived.

– In the final-round optimal run, as the WCET quality
improves to the best level, the estimated WCETs are
noted down and the tightness in reduction of over-
estimation is derived, by reference to the measured
execution times. Furthermore, the percentage of in-
put programs that a tool can handle are counted.

– Between the first-round and the final-round run, the
test aspects concerning required user interaction and
performance are evaluated and the usability is as-
sessed based on the ISO 9421 standard.

– Prediction of the timing behavior of realistic pro-
cessors requires that tools can handle performance-
enhancing features such as caches, pipelines, and branch
prediction. Hence, the complexity of supported target
processors is taken into account in the evaluation.

2.4 Test Computer Specification

The computer used for running the external test is a lap-
top with an AMD Mobile Sempron TM Processor 2800+,
1.60 GHz, and 448 MB RAM. Three other PCs (AMD
Athlon TM 2500+, 1.83 GHz, 992 MB of RAM), two
with Windows XP and one with Linux platform at the
University of Duisburg-Essen, have also been selected for
executing Bound-T and for accessing Chronos by remote
server.

3 Test Implementation

Based on the test framework, a schedule has been made
to visit the tool developers and to test their tools. The
tests were performed starting with aiT and continuing
with Bound-T, MTime, SWEET, and Chronos. Roughly
one week was spent on each tool (including traveling).
Table 2 shows the final test schedule.

3.1 aiT

Test Initiation. The visit at AbsInt in Saarbrücken and
Saarland University from October 4th to 6th. The visit
included a training course, testing of the tools, feedback,
discussions, and measurements on evaluation boards.



The Worst Case Execution Time Tool Challenge 2006: Technical Report for the External Test 3

The training course covered many technical issues
about aiT in detail. During the test, aiT for C16X, aiT
for ARM7, and aiT for MPC565 were installed. All bench-
mark binary files were received and tested. Various addi-
tional topics were discussed with several specialists from
AbsInt and the University of Saarland., e.g., annotations
of floating point’s implementations on integer machines,
and annotation for the C runtime library.

The feedback on the usage of aiT given by the au-
thor was discussed. Additionally, we discussed the auto-
matic analysis of code coming from model-based software
development environments, such as SCADE or Matlab/
Simulink.

With support by AbsInt, the execution time mea-
surements were performed on October 5th. All of the
three target processors were measured with an ISYS-
TEMS ILA 128 logic analyzer. The measured values (see
Table 6) and the estimated WCET were compared. Some
of the measurements have been done several times. Af-
ter the visit, several test results were further elaborated
upon.

Working with aiT. The typical working pattern with aiT
includes: invoke aiT either with the aiT icon or through
command line, follow the hints and links of the GUI,
provide annotations, take a look at aiSee, and execute
the WCET calculation by mouse-click in the aiT GUI.

After specifying the CPU clock value for each tar-
get processor, aiT delivered WCET outputs for 45 test
programs automatically without annotation (see Table
3. 54% of all 84 programs).

For the reduction of overestimation of the WCET
results, human efforts are required. aiT assists the devel-
opment of annotations in the following ways:

1. The aiT GUI gives hints for annotations guiding
users throughout the test. Hints come along with links
into the code (binary and source). This allows users to
concentrate on WCET and avoids tedious actions, like
invoking additional programs and changing interfaces.

2. aiT’s visualization helps users to understand the
timing behavior of programs. For the visualization, an-
notated call- and control-flow graphs can be dynamically
explored with the help of the aiSee graph browser. Fig-
ure 1 illustrates a control-flow graph from the edn bench-
mark program by aiT for MPC565. Additional informa-
tion like loop bounds can be shown on demand.

3. aiT detects loop bounds, counterchecks annota-
tions with analysis results, and warns users if invalid an-
notations are found. Cases about warning users of their
invalid annotations are found. To demonstrate this fea-
ture, we select the same example for the test program
edn as mentioned above in Figure 1.

aiT for MPC565 detected for the edn benchmark that
the loop shown in Figure 1 iterates 23 times (#23). If
users give a wrong annotation like:

”loop ”main” + 1 loop max 20”

in the annotation file edn.ais, then aiT for MPC565
delivers the warning message:

”powerdaan: Warning: In edn.c, line 244:
At address 0x17dc in routine ’main.L1’:
loop seems to have more iterations than specified:
at least 22 instead of 21.”
Figure 2 shows this message in red color in the aiT

GUI Messages area. The annotation, ”loop ”main” +
1 loop max 20” was wrongly given in the annotation
file. The link showing the address 0x17dc in the message
window leads users directly to the position in the binary
code, which is shown in the left side of the screenshot. It
also directs to line 244 of the respective C source code
file shown on the right side of the figure. These features
help to avoid wrong annotations made by users and limit
the chance to produce errors in WCET analysis.

4. aiT collects all settings of annotations, predicted
results, and WCET details automatically into one report
file. It is not necessary to open a text editor to copy,
paste, and save the run messages.

5. aiT allows users to specify paths for executable
files, setting files, annotation files, predicted results, and
WCET graphs in GUI and in aiT project files. To re-run
the programs, users do not need to keep the command
line in mind, do not need to look up manuals, and do not
need to specify the paths. aiT project works by mouse-
click.

6. The analysis time of aiT for benchmark test pro-
grams is generally in seconds. The only exception en-
countered was by analyzing the test program matmult
with optimal annotation for aiT for ARM7. It was not
possible to analyze the program with these annotations
on the test computer due to limited memory capacity. No
such problem has been encountered on a larger computer
reported by [4].

3.2 Bound-T

Test Initiation. The first installation of Bound-T and
tests with example programs was finished and tests of
benchmark test programs for H8/300 in *.coff format
were performed before the test trip.

On October 26th, a Bound-T meeting was held in
Väster̊as. The Bound-T developer introduced important
technical issues about Bound-T. Hints concerning for as-
sertions were explained in detail with an example. Fur-
ther tests with assertions were continued latter on.

Working with Bound-T. The general working pattern
with Bound-T includes: invoke Bound-T through the
command line, follow the hints in the run messages, in-
spect source code programs and executable programs for
loop bounds if necessary, look up hints in the manuals for
developing annotations, execute the WCET calculation
through the command line, and save the WCET output
value for later use.



4 Lili Tan

After invoking the Bound-T command line, Bound-
T analyzed 13 test programs and delivered their WCET
results without manual annotation (26% of 51 programs,
see Table 3).

Bound-T displays run messages on the screen and an
output graph. Both of the run messages on the screen
and the output graph assist users for developing anno-
tations. Figure 3 is an example of a screenshot of the
Bound-T interface. In the figure, the analysis results for
the benchmark program cnt in *.coff format are pre-
sented for the target processor H8/300. The loop bounds
detected by Bound-T are listed in the run messages to-
gether with the function names, the C source file, and
the line numbers. The overall WCET value for the main
function of the program cnt, accompanied by WCET val-
ues of the functions called, is also listed in the run mes-
sages. Figure 4 shows the graphical output for the cnt

program. The overall WCET value and the detailed cal-
culation are illustrated graphically corresponding to the
run message in the screenshot.

According to the run messages and output graph,
users can check the C program file or the executable
code if possible, for developing assertions.

On the test computer, we encountered some problems
with the Windows version of Bound-T. No such problem
was reported by users of the Linux version. Bound-T
could handle 13 out of 17 test programs (76.5%). Bound-
T failed on 4 programs. It was not able to handle recur-
sion in the test programs recursion and nested loops in
the janne complex and statemate. It returned an error
message about ”irreducible flow-graph” while analyzing
the duff test program, which contained multiple entry
points in a loop.

3.3 MTime

The visit to the Real-Time Systems Group at the TU-
Vienna was from October 11th to 12th. MTime devel-
opers introduced the background, the architecture, and
applications of their tool.

MTime is designed for WCET-oriented automatic test
data generation with the functionality of model checking.
It uses so-called automatic parametrical CFG partition
to reduce complexity and applies segmentation to min-
imize the overall number of tests. Instead of modeling
processors, it performs measurements of test data gen-
erated. The results of measurements are then used to
calculate the final WCET.

MTime developers provided us with a PC and ex-
ample test programs that they develop. The usability
for the examples is similar to the other WCET research
prototypes in the challenge. In addition, we installed and
tested MTime on the test laptop. The installation proce-
dure of MTime was rather straightforward as with other
WCET tools tested in the challenge.

Due to the fact that MTime did not support function
calls at that time, it was not possible to produce any
result for the WCET Challenge benchmark programs.

3.4 SWEET

Test Initiation. A SWEET meeting was held at Mälarda-
len University on October 25th.

The SWEET developers introduced the architecture,
the flow analysis, and the use of SWEET. SWEET was
installed on the test computer, and some tests were per-
formed during the visit. The programs under test in-
cluded the 15 Mälardalen WCET benchmarks in inter-
mediate NIC code format, which compiled by SWEET
developers with a research compiler. The two PapaBench
benchmark test programs were not included in the deliv-
erable list and therefore no test was performed for them,
because SWEET was not able to analyze the PapaBench
programs.

After the visit, the 15 test programs, the four modes
for each test program in flow analysis, every update of
SWEET during the challenge were tested and the test
results were also updated accordingly.

Working with SWEET. The typical working pattern with
SWEET is: start SWEET in the Cygwin environment,
specify a mode in the command line, run a test pro-
gram, and find the WCET result in the run message on
the monitor screen. By the use of multi-path mode with
SWEET, users have to examine the suitable application’s
requirements.

Without manual annotation, SWEET analyze auto-
matically all 15 Mälardalen benchmark test programs,
using the simple path basic mode and simple path ad-
vanced mode defined by SWEET. The WCET analy-
sis results delivered by SWEET include run messages in
monitor and DOT graph files. Figure 5 is the graphi-
cal analysis result for the test program janne complex.
It illustrates the hierarchical structure of loops and the
nested relation between inter and outer loops as detected
by SWEET.

In basic mode, only simple loop bounds are calculated
by the flow analysis, while in advanced mode all types
of loop bounds as well as infeasible paths are calculated.
The test results for the single path basic mode and single
path advanced mode are presented in Table 3. By using
the advanced mode, reduction in estimated WCETs can
be observed in comparison with the test results (see Ta-
ble 3 and Figure 6). This is a result of advanced loop
bound calculation and infeasible path detection to re-
duce the estimated WCETs and the overestimation.

Some programs can be assigned with multi-path mode
and run with SWEET. The suitable programs for the
multi-path mode are crc, edn, insertsort, janne complex,
ns, and nsichneu. The test results are illustrated in Fig-
ure 6 and Table 4.



The Worst Case Execution Time Tool Challenge 2006: Technical Report for the External Test 5

SWEET delivered 15 WCET test results for all of the
15 Mälardalen WCET benchmarks without annotation
(see Table 3). In total, 88.2% of the test programs were
analyzed (15 of 17). The test for program nsichneu in
advanced mode could not deliver a result due to mem-
ory limitations of the test laptop. No such problem has
encountered by other computer [4].

Advanced application with SWEET might benefit
from a more detailed description of the syntax and se-
mantics of annotation files, as well as automatical selec-
tion of appropriate modes where they are suitable.

3.5 Chronos

Test Initiation. The test of Chronos was performed in
the last week of October and at the beginning of Novem-
ber 2006. Basically, Chronos can be used in two possible
manners: command line and GUI. Chronos can also work
with two different integer linear programming solvers.
One is an open source program, ”lp solve” [11], which is
also used by all other WCET tools. The other one is the
commercial product from ILOG, the CPLEX LP solver
[12]. Recommended by the Chronos developers, we used
the CPLEX and tested Chronos on a remote server be-
cause of the licensing issues.

Working with Chronos. Working remotely through the
internet and testing in different operating system plat-
forms and with different runtimes, several non-WCET
related implementation problems occurred and were solved
within the test duration. In the remaining part of this
section, we present the test procedure under which we
achieved the test results.

The software X-Win32 and StarNetSSH was used to
access the remote server in Singapore. Because of the
extremely slow response resulting from the Java run-
time in remote, Chronos GUI could not be used. We
used command line interface instead. The benchmark
programs were compiled through remote access by us-
ing GCC 2.2.2.3 and analyzed by the Chronos WCET
analysis kernel. The estimated WCET values (see Ta-
ble 3 and 5) were calculated by CPLEX. The simulated
WCET values were obtained by using command line for
simulation, a utility provided by the SimpleScalar simu-
lator (see Table 6). The three processor configurations
for both the estimated WCETs and simulated execu-
tion times require the corresponding configuration set-
ting files, i.e., the Simple in-order, Complex in-order, and
Complex out-of-order.

Chronos could handle 13 out of 17 benchmark test
programs (76.5%) for all of the three processor configura-
tions. Reasons why the test failed with 4 programs were:
Chronos was not able to handle recursion; Chronos did
not cope with non-deterministic control transfer in cover

and could not handle duff , which contained multiple en-
try points in a loop. The autopilot, one of the PapaBench
test programs, could not be analyzed by Chronos.

Although the external test for Chronos was remote,
the tests for each benchmark executed averagely quickly
using CPLEX.

4 Test Results

We present test results and interpret them in this section.
Generally, the test results of the different WCET

tools are not directly comparable, as the tools are de-
signed for different target processors. By analyzing dif-
ferent data, we gained a picture of each WCET tool and
their main concepts. Therefore, we present those test re-
sults that best describe the characteristics of the various
WCET tools, followed by a summary of the mutual fea-
tures, from the aspect of functional and service quality.

The results presented consist of four parts correspond-
ing to the three-round test procedure and a summary of
general features of each tool:

– Test results without annotations
– Test results with annotation and the precision
– Usability assessment during developing annotations

in the test procedure
– Summary of functional and service quality

4.1 Test Results without Annotations

The WCET values that were estimated by each tool in
the first test round using no annotations are summarized
in Table 3. They are the WCET prediction of different
benchmark test programs on the supported target pro-
cessors. The concrete and absolute WCET values in the
table are not comparable as they are targeted for dif-
ferent processors. The numbers of benchmark test tasks
that each WCET tool processed among the given bench-
mark test programs indicate the degree of automation of
a tool.

4.2 Test Results with Annotations

After providing human interaction and annotations, the
test results are improved from two aspects. From the
aspect of quantity, the number of analyzable test pro-
grams increase; from the aspect of quality, the precision
increases and the overestimation is reduced.

Servability of WCET Tools. The number of different pro-
grams that a tool can handle indicates the ability of a
tool in analyzing input programs. In an effort to make
the incomparable test results comparable, we decided to
avoid comparing the concrete output values of each tool,
but to treat each output abstractly as a success of the
tool and use ”1” as an indicator to represent that a re-
sult is produced. Table 4 presents these abstract service
results. In addition, errors encountered - test computer
related or not - are also presented in the table.



6 Lili Tan

Estimated WCET with Annotations. Table 5 gives the
WCET values calculated by aiT and Chronos with an-
notations. These WCET values will be used for the calcu-
lation of the precision of tools. Besides aiT and Chronos,
no measurement value could be obtained from other tools
in this challenge. Therefore, the WCET values calculated
and their precision could only be evaluated for aiT and
Chronos.

Measured and Simulated WCET. Table 6 gives the ex-
ecution time of WCET measurements for the programs
considered by aiT and Chronos respectively.

For aiT, the execution times were measured on real
hardware using a logic analyzer. For Chronos, the Sim-
pleScalar simulator has been used. No measurement of
execution time has been provided by the other tools.

WCET Tightness. The WCET tightness in Table 7 is
calculated from the the values of Table 5 and 6 for aiT
and Chronos. The spectrum of tightness for both tools
is also shown in Figure 7 and 8.

4.3 Usability Assessment

The ease to use a WCET tool contributes to the suc-
cessful results of the WCET analysis. Defined by ISO
9241, usability refers to the extent to which a product,
e.g., a software tool, can be used by specified users to
achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use. The usability
assessment for WCET tools in the challenge is based on
the successes of WCET results achieved in analyzing the
benchmark test programs, because the time and efforts
spent for each tool are generally the same.

Our considerations for usability include: How many
hints given by a tool are helpful in conducting WCET
analysis for the selected benchmark test programs, rather
than just reviewing users’ manual. Tool developers should
not expect users to read their document from the first to
the last page. Users generally expect appropriate tips
and hints appearing automatically at the appropriate
moment when they use the tools.

The main problem detracting from the usability of a
tool is that it lacks users-centric usability design by some
tools in the up-to-know design status, e.g., frequency of
switching software interfaces to look up manuals and to
open different programs in order to develop assertions or
to create graphs.

Some other factors, which come from algorithm and
functionality design rather than usability design of a
WCET tool, do really affect the assessment of usabil-
ity. They detract the effectiveness, efficiency, and satis-
faction from achieving the goal to successful analysis of
the benchmark programs within the test duration. These
factors include:

– Frequency of errors encountered

– Differences in derivation of analysis time for different
test programs in a single tool

– Long analysis time combined with any one of the
above factors.

The usability experienced by the author during the three-
round test is summarized in Table 8. From the author’s
experience, aiT provides the best usability.

4.4 Summary of Functional and Service Quality

Table 9 gives an overview of the important indicators
from test results, namely tightness, service rate, automa-
tion rate, and types of processors supported by the tools.

Tightness is a black box indicator for the functional
quality of a WCET tool in that people are not necessary
to indulge in analyzing the individual correctness of algo-
rithms adopted by each tool. The best are given by aiT.
aiT delivers the tightest WCET. The overestimation is
less than 8%.

The service rate of a tool indicates the ratio of the
number of input benchmarks that could be handled and
the total number of the inputs. Failures encountered that
solely result from the limits of the test computer are ex-
cluded from the calculation of service numbers and ser-
vice rate. The best results come from aiT; it gets 100%.

The automation rate is calculated as the ratio of
the number of automatically analyzed programs and the
number of all analyzable ones. Table 9 indicates that full
automation has not been reached. The best results come
from SWEET; it gets up to 88%.

The state-of-the-art WCET tools support different
types of processors, which range from simple, through
medium to very complex. aiT supports very complex pro-
cessors like the MPC 565.

5 Conclusion

The external test for the WCET Tool challenge was ac-
complished.

All of the entered tools have presented their strengths
of different aspects in analyzing WCET problems: aiT is
able to handle every kind of benchmark and every test
program that was tested in the Challenge. aiT is able
to support WCET analysis even for complex processors.
aiT and Chronos are able to demonstrate the precision
of their WCET prediction. Both commercial tools aiT
and Bound-T are able to handle the two fly-by-wire Pa-
paBench test programs. SWEET is able to automati-
cally analyze 88% benchmark test programs. The analy-
sis time of Chronos was very short when using CPLEX.
aiT demonstrates its leading position through all its fea-
tures, which contribute to its position as an industry-
strength tool satisfying the requirements from industry
as posed by EADS Airbus and proven by the accomplish-
ment in various projects.



The Worst Case Execution Time Tool Challenge 2006: Technical Report for the External Test 7

The external test trips provided both the tools devel-
opers and the test person with the opportunity to discuss
directly the feedback on using the tools. Feedback on the
tools’ usability and the possible software faults has been
taken into account by the relative developers for the fur-
ther development of their tools. All of the tool developers
have provided their best support and cooperation for the
external test.

This challenge has encouraged WCET research and
activities in the WCET community. During the chal-
lenge, many developers were engaged in developing and
improving their tools further. A total of 25 updated ver-
sions of the software were submitted and their latest re-
leases have demonstrated the great improvements on the
WCET results from several aspects.

At the ISoLA 2006 conference, the challenge has also
caught the attention of more WCET developers. They
showed their interest to participate in the next challenge.
All of the tool developers want to enhance their tools for
more intensive industrial applications.

This challenge reveals the success of the ”Saarland
Model” presented by Saarland University and AbsInt.
The cooperation between scientific research and industry
gives rise to a synergistic effect on all participants in the
cycle of education, research, and industry in our society
[13].

We anticipate positive effects of the challenge on the
WCET community in research tool development, and in-
dustry applications.

Acknowledgements Thanks to the support by Klaus Ech-
tle and Christina Braun at the University of Duisburg-Essen,
ICB/Computer Science. Thanks to the support by Jan Gustafs-
son, Reinhard Wilhelm, and the WCET Tool Challenge Work-
ing Group. Thanks to the support by WCET tool develop-
ers during the WCET Tool Challenge 2006. They are Chris-
tian Ferdinand, Martin Sicks, Steffen Wiegratz, Florian Mar-
tin, Reinhold Heckmann, and Christoph Cullmann of AbsInt
Angewandte Informatik GmbH, Stefan Thesing and Björn
Wachter of Saarland University, Niklas Holsti of Tidorum
Ltd., Björn Lisper, Jan Gustafsson, Stefan Byqde of Mälardalen
University, Raimund Kirner, Ingmar Wenzel, and Berhard
Rieder of TU-Vienna, Tulika Mitra, Abhik Roychoudhury,
Vivy Suhendra, and Liangyun of National University of Sin-
gapore.

References

1. Wilhelm, R. et al.: The Worst Case Execution Time Prob-
lem -Overview of Methods and Survey of Tools. ACM
Transaction on Programming Languages and Systems
@20YY ACM 0164-0925/20YY/0500-00001, Pages 1-47.

2. WCET Tool Challenge 2006. http://www.idt.mdh.se/
personal/jgn/challenge/, November 2006.

3. 2nd International Symposium on Leveraging
Applications of Formal Methods, Verification
and Validation (ISoLA20006), http://sttt.cs.uni-
dortmund.de/isola2006/?id=program, 2006.

4. Gustafsson, J.: WCET Tool Challenge 2006. In Proceed-
ing 2nd International Symposium on Leveraging Appli-
cations of Formal Methods, Verification and Validation
(ISoLA2006), Cyprus, November 2006.

5. aiT WCET Analyzer (aiT), AbsInt. http://absint.com
6. Bound-T, Tidorum. http://www.tidorum.fi/bound-t.
7. MTime, Vienna real-time systems group.

http://www.vmars.tuwientuwien.ac.at.
8. SWEET, Mälardalen University. http://www.mrtc.mdh.

se/projects/wcet.
9. Chronos, National University of Singapore.

http://www.comp. .nus.edu.sg/ rpembed/chronos
10. PapaBench, IRIT, http://www.irit.fr/recherches/AR

CHI/MARCH/rubrique.php3?id rubrique=97.
11. Berkelaar, M.: lp solve, ftp://ftp.es.ele.tue.nl/pub

/lp solve.
12. CPLEX, ILOG, http://www.ilog.com/
13. Tan, L., Suhl L.: Scenario and Authoring Tool for

Web-based Case Study Education in Operations Re-
search/Management Science. In Proceeding World As-
sociation for Case Method Research and Application
(WACRA’02), Mannheim, July 2002.



8 Lili Tan

Fig. 1 Screenshot of aiT’s visualization tool aiSee. It shows a combined function call and control flow graph. The graph
contains timing details. The graph can interactively be explored within aiSee.

Fig. 2 Screenshot of the aiT GUI. It displays source code and binary code. It detects loop bounds and warns of possibly
wrong annotations (see Message window). This helps aiT users to avoid errors.



The Worst Case Execution Time Tool Challenge 2006: Technical Report for the External Test 9

Fig. 3 Screenshot of the Bound-T user interface. It shows the command line used to invoke Bound-T, the detected loop
bounds, and the WCET values for the functions of the analyzed program.

Fig. 4 Bound-T call graph. It displays the predicted WCET values for functions, the loop bounds, and the overall WCET.



10 Lili Tan

Fig. 5 SWEET scope graph. It displays the hierarchical structure and the nested relation between inter and outer loops
that detected by SWEET.

Fig. 6 SWEET: Reduction of Estimated WCETs by use of Advanced Mode in Comparison to Basic Mode. By use of
advanced mode, advanced loop bounds, like triangle loops and infeasible paths are to be detected. As a result, the reduction
of estimated WCETs for advanced mode is expected by comparison to basic mode.



The Worst Case Execution Time Tool Challenge 2006: Technical Report for the External Test 11

Table 1 WCET Tools, Supported Target Processors and Compilers

Nr Tool (Processor, Compiler) Affiliation of Tool Developer

V1 aiT C16X (Infineon C16x, Tasking v8.5) AbsInt Angewandte Informatik GmbH, Germany
V2 aiT ARM7(ARM7, TI v2.17) AbsInt Angewandte Informatik GmbH, Germany
V3 aiT MPC565 (PPC MPC565,Diab v5.3.1.0) AbsInt Angewandte Informatik GmbH, Germany
V4 Bound-T H8/300 GCC (Renesas H8 300,GCC) Tidorum Ltd., Finland
V5 Bound-T H8/300 IAR (Renesas H8 300,IAR) Tidorum Ltd., Finland
V6 Bound-T SPARC (ERC32,GCC-based BCC) Tidorum Ltd., Finland
V7 MTime (Motorola HCS12, COSMIC) TU-Vienna, Vienna
V8 SWEET (ARM9, CtoNIC) Mälardalen University, Väster̊as
V9 Chronos (SimpleScalar Simple in-order, GCC) National University of Singapore, Singapore
V10 Chronos (SimpleScalar Complex in-order, GCC) National University of Singapore, Singapore
V11 Chronos (SimpleScalar Complex out-of-order, GCC) National University of Singapore, Singapore

Table 2 External Test Working Table

Nr. Duration Test Activities Place

0 2006-09-29 Start right after the organizational decision made Essen, Germany
1 2006-10-02 to 06 Test aiT, aiT trip (2006-10-03 to 06) Saarbrücken, Germany
2 2006-10-09 to 13 MTime trip (2006 -10-10 to 13) Vienna, Austria
3 2006-10-16 to 20 Test aiT, Test Bound-T Essen, Germany
4 2006-10-23 to 27 Test Bound-T, Bound-T and SWEET trip (2006-10-24 to 28) Väster̊as, Sweden
5 2006-10-30 to 11-03 Test Chronos, Test Bound-T, Test SWEET Essen, Germany
6 2006-11-06 to 13 Report drafting, Test SWEET Essen, Germany
7 2006-11-14 to 20 ISoLA conference trip, Test report on 2006-11-17 Paphos, Cyprus

Fig. 7 aiT tightness for the three target processors Infineon
C16X, ARM7 (TMS470), and Power PC MPC565. The aver-
age aiT’s overestimation is less than 8 %.

Fig. 8 Chronos tightness for the three SimpleScalar config-
urations: Simple in-order, Complex in-order, and Complex
out-of-order. The average overestimation of Chronos is less
than 90% for the three processor configurations.



12 Lili Tan

Table 3 Estimated WCET Values∗ (in Cycles) without Annotations

Nr. Benchmarks aiT aiT aiT Bound-T Bound-T Bound-T
V1 V2 V3 V4 V5 V6

1 adpcm
2 cnt 32812 26572 7576 45806 78982
3 compress
4 cover 19459 6780 5451 10250 180
5 crc 107278 164118 268657
6 duff
7 edn 307889 104907
8 insertsorts
9 janne complex
10 matmult 1562815 523599 237736 1506520 3282132
11 ndes 816337 194448 1944845 712454 4214
12 ns 238414 38043 34361 20976 256960 7097
13 nsichneu 41678 21362
14 recursion
15 statemate
16 Fbw1: fly-by-wire test ppm task 9875 1242

Fbw2: fly-by-wire send data to autopilot task 3197 331
Fbw3: fly-by-wire check mega128 values task 4092 437
Fbw4: fly-by-wire servo transmit 2390 1909 1249
Fbw5: fly-by-wire check failsafe task 4058 432

17 Au1: autopilot radio control task 15972 2247
Au2: autopilot stabilisation task 4239 340
Au3: autopilot link fbw send 170 144 81
Au4: autopilot receive gps data tasks
Au5: autopilot navigation task
Au6: autopilot altitude control task 915 95
Au7: autopilot climb control task 4129 247
Au8: autopilot reporting task 8286 11172 4464

18 Benchmarks analyzed 8 18 19 4 6 3
19 Total 28 28 28 17 17 17

Nr. Benchmarks SWEET SWEET Chronos Chronos Chronos
V81 V82 V9 V10 V11

1 adpcm 2165650 2162122
2 cnt 36719 35319 4896 6438 5401
3 compress 206480 49896
4 cover 73128 63563
5 crc 834159 830278
6 duff 5525 4720
7 edn 1425085 1425085 89401 113612 89030
8 insertsorts 31163 18167
9 janne complex 12039 2523 189 800 789
10 matmult 2532706 2532706 186903 191615 119526
11 ndes 795425 795425
12 ns 130733 130631
13 nsichneu 119707 N/A3
14 recursion 29079 20033
15 statemate 15964 8451
16 Fbw1: fly-by-wire test ppm task

Fbw2: fly-by-wire send data to autopilot task
Fbw3: fly-by-wire check mega128 values task
Fbw4: fly-by-wire servo transmit
Fbw5: fly-by-wire check failsafe task

17 Au1: autopilot radio control task
Au2: autopilot stabilisation task
Au3: autopilot link fbw send
Au4: autopilot receive gps data task
Au5: autopilot navigation task
Au6: autopilot altitude control task
Au7: autopilot climb control task
Au8: autopilot reporting task

18 Benchmarks analyzed 15 15 4 4 4
19 Total 17 17 17 17 17
∗= The estimated WCETs here are not comparable since they assume different compilers and processors.
N/A = Memory exhausted in the test laptop.
V81 = Single path basic mode.
V82 = Single path advanced mode.



The Worst Case Execution Time Tool Challenge 2006: Technical Report for the External Test 13

Table 4 Servability of WCET Tools with Annotations

Nr. Benchmarks aiT aiT aiT Bound-T Bound-T Bound-T
V1 V2 V3 V4 V5 V6

1 adpcm 1 1 1 1 1 1
2 cnt 1 1 1 1 1 1
3 compress 1 1 1 1 1 1
4 cover 1 1 1 1 1 1
5 crc 1 1 1 1 1 1
6 duff 1 1 1 N/A1 N/A1 N/A1
7 edn 1 1 1 1 N/A2 N/A2
8 insertsorts 1 1 1 1 1 1
9 janne complex 1 1 1 N/A1 N/A1 N/A1
10 matmult 1 N/A3 1 1 1
11 ndes 1 1 1 1 1 1
12 ns 1 1 1 1 1 1
13 nsichneu 1 1 1 1 1 N/A2
14 recursion 1 1 1 N/A1 N/A1 N/A1
15 statemate 1 1 1 N/A1 N/A1 N/A1
16 Fbw 1 1 1 1 1 1
17 Au 1 1 1 1 1 1

Nr. Benchmarks SWEET SWEET Chronos Chronos Chronos
V83 V84 V9 V10 V11

1 adpcm 1 1 1 1 1
2 cnt 1 1 1 1 1
3 compress 1 1 1 1 1
4 cover 1 1 N/A1 N/A1 N/A1
5 crc 1 1 1 1 1
6 duff 1 1 N/A1 N/A1 N/A1
7 edn 1 1 1 1 1
8 insertsorts 1 1 1 1 1
9 janne complex 1 1 1 1 1
10 matmult 1 1 1 1 1
11 ndes 1 1 1 1 1
12 ns 1 1 1 1 1
13 nsichneu 1 N/A3 1 1 1
14 recursion 1 1 N/A1 N/A1 N/A1
15 statemate 1 1 1 1 1
16 Fbw N/A1 N/A1 1 1 1
17 Au N/A1 N/A1 N/A1 N/A1 N/A1

1 = Program analyzable.
Fbw = fly-by-wire.
Au = autopilot.
N/A1 = The tool does not handle this problems with the release at that time.
N/A2 = Microsoft Windows informed that the Omega Calculator had conflict with Microsoft Windows System.
N/A3 = Memory exhausted in the test computer.
V83 = Multi-path basic mode.
V84 = Multi-path advanced mode.



14 Lili Tan

Table 5 Estimated WCET Values in Cycles with Annotations

Nr. Benchmarks aiT aiT aiT Chronos Chronos Chronos
V1 V2 V3 V9 V10 V11

1 adpcm 558342 1375886 430274 265588 347742 317354
2 cnt 20250 17053 7376 4896 6438 5401
3 compress 37570 20280 9461 5873 29215 28487
4 cover 10452 6780 5006 N/A1 N/A1 N/A1
5 crc 275910 213337 98830 47786 61849 53275
6 duff 7196 4612 1355 N/A1 N/A1 N/A1
7 edn 927068 307889 88381 89401 113612 89030
8 insertsorts 4870 3992 1838 901 1549 1245
9 janne complex 1330 829 383 189 800 789
10 matmult 956710 N/A3 237736 186903 191615 119526
11 ndes 453348 194448 130025 66655 107589 85918
12 ns 75712 38043 18215 8199 9991 8676
13 nsichneu 29840 18827 8327 13609 97908 97525
14 recursion 10076 7451 5527 N/A1 N/A1 N/A1
15 statemate 2620 3812 1294 2007 16185 16103

N/A1 = The tool does not handle this problems with the release at that time.
N/A3 = Memory exhausted in the test computer.

Table 6 Measured and Simulated Execution Times

Nr. Benchmarks aiT aiT aiT Chronos Chronos Chronos
V1 V2 V3 V9 V10 V11

1 adpcm buffer buffer buffer 160891 183526 126258
2 cnt 19622 16853 7235 4792 5586 3515
3 compress 27308 19970 6824 5859 7504 4744
4 cover 10080 6778 4299 N/A N/A N/A
5 crc buffer buffer buffer 22688 26861 18098
6 duff 6919 4610 1028 N/A N/A N/A
7 edn 838686 299734 buffer 87444 108973 62995
8 insertsorts 4720 3990 1770 897 1364 949
9 janne complex 1294 827 359 185 454 356
10 matmult 936602 438435 buffer 186899 185937 90834
11 ndes 401294 190530 buffer 65600 86639 53625
12 ns 73738 36097 buffer 6577 7568 4784
13 nsichneu 28328 18825 8052 6305 42966 40931
14 recursion 8318 7143 5096 N/A N/A N/A
15 statemate 2486 3810 1260 1120 6207 5898

N/A = not applicable.
buffer = Because of the buffer limitation, it is not possible to measure the WCETs.



The Worst Case Execution Time Tool Challenge 2006: Technical Report for the External Test 15

Table 7 WCET Tightness

Nr. Benchmarks aiT aiT aiT Chronos Chronos Chronos
V1 V2 V3 V9 V10 V11

1 adpcm N/A N/A N/A 65.07% 89.48% 151.35%
2 cnt 3.2 % 1.19% 1.95% 2.17% 15.25% 53.66%
3 compress 37.58% 1.55% 38.64% 0.24% 289.33% 500.48%
4 cover 3.69% 0.03% 16.45% N/A N/A N/A
5 crc N/A N/A N/A 110.62% 130.26% 194.37%
6 duff 4.05% 0.04% 31.81% N/A N/A N/A
7 edn 10.54% 2.72% N/A 2.24% 4.26% 41.33%
8 insertsorts 3.18% 0.05% 3.84% 0.45% 13.56% 31.19%
9 janne complex 2.7% 0.24% 6.69% 2.16% 76.21% 121.63%
10 matmult 2.15% N/A N/A 0.0% 3.05% 31.59%
11 ndes 12.97% 2.06% N/A 1.61% 24.18% 60.22%
12 ns 2.68% 5.39% N/A 24.66% 32.02% 81.35%
13 nsichneu 5.34% 0.01% 3.42% 115.84% 127.87% 138.27%
14 recursion 21.13% 4.31% 8.46% N/A N/A N/A
15 statemate 5.39% 0.05% 2.7% 79.2% 160.75% 132.02%

N/A = not applicable.

Table 8 Usability Assessment: Taking into account both the Mälardalen and the PapaBench Benchmark Programs

Tool Average Tightness Warning of Accomplishment of Acceptability in
for Annotation Annotation Errors Intended Tasks in Time Analysis Time

aiT aiT GUI, aiSee GDL, Cases were found. Yes Acceptable
Hints, Links, User manual.

Bound-T Run messages, Graph, No case was founded. Generally yes Generally acceptable
User manual.

SWEET Run messages, Graphs. No case was founded. Yes Mostly acceptable
Chronos GUI1, User manual. No case was founded. Generally yes Good2

GUI1 = Chronos GUI could not be tested in the challenge.
Good2 = Test withinteger linear programming solver CPLEX.
Acceptable = Average analysis time and their variations are within a few seconds or minutes.

Table 9 Overview of Functional and Service Quality of WCET Tools

Tool Average Benchmarks Benchmarks Benchmarks Average
Tightness not Handled Analyzed under Test Service Rate

by the Tool

aiT 7-8% 0 17 17 100%
Bound-T N/A 4 13 17 76.5%
SWEET N/A 2 15 17 88.2%
Chronos 81-89% 4 13 17 76.5%

Tool Programs Analyzed Programs Tasks Average Complexity of
Without Annotation under Test Automation Rate Processor Supported*

aiT 45 84 54% Simple, Medium,
Very Complex

Bound-T 13 51 26% Simple, Medium
SWEET 15 17 88% Medium
Chronos 12 51 24% Configurable

Simulated Processor

N/A = No measured WCET was available and no WCET tightness was available at this time.
* = The classification of the processors type is based on the challenge statement.


