
Astrée

Proving the Absence of Runtime Errors

AbsInt GmbH

2012

© AbsInt GmbH 2012

Functional Safety

 Demonstration of functional correctness

 Well-defined criteria

 Automated and/or model-based testing

 Formal techniques: model checking, theorem proving

 Satisfaction of non-functional requirements

 No crashes due to runtime errors (division by zero,
invalid pointer accesses, overflow and rounding errors)

 Resource usage

 Timing requirements (e.g. WCET, WCRT)

 Memory requirements (e.g. no stack overflow)

 Insufficient: tests and measurements

 Test end criteria unclear

 No full coverage possible

 ―Testing, in general, cannot show the absence of errors.‖ — DO-178B

 Access to physical hardware: high effort
due to limited availability and observability

2

Required by

DO-178B/ DO-178C,

ISO-26262, EN-50128,

IEC-61508

Required by

DO-178B/ DO-178C,

ISO-26262, EN-50128,

IEC-61508

© AbsInt GmbH 2012

Background

 Safety-critical embedded systems must satisfy high quality objectives

 Software failures can

 in general: cause high costs, e.g. due to recall campaigns

 in highly critical systems: endanger human beings

 Software test and validation responsible for significant part
of development costs (frequently 50% and beyond)

 Challenge: comprehensively ensure system safety at reasonable costs

 AbsInt focuses on non-functional program errors
(timing, memory consumption, runtime errors)

 Examples of related software failures:

 Time drift in Patriot rockets in 1991 (rounding error)

 Crash of railway switch controller 1995 in Hamburg-Altona (stack overflow)

 Explosion of Ariane rocket 1996 (arithmetic overflow)

 …

3

© AbsInt GmbH 2012

Static Analysis – an Overview

 General definition: results are only computed
from the program structure,
without executing the program under analysis

 Classification

 Syntax-based: Style checkers (e.g. MISRA-C)

 Unsound semantics-based: Bug finders/bug hunters

 Cannot guarantee that all bugs are found

 Examples: Splint, Coverity CMC, Klocwork K7,…

 Sound semantics-based/abstract-interpretation–based

 Can guarantee that all bugs from the class under analysis are found

 Results valid for every possible program execution
with any possible input scenario

 Examples: aiT WCET Analyzer, StackAnalyzer, Astrée

4

© AbsInt GmbH 2012

Abstract Interpretation

 Most interesting program properties are undecidable in the concrete
semantics. Thus: concrete semantics mapped to abstract semantics
where program properties are decidable (efficiency–precision
trade-off). This makes analysis of large software projects feasible.

 Soundness: A static analysis is said to be sound when the data flow
information it produces is guaranteed to be true for every possible
program execution. Formally provable by abstract interpretation.

 Safety: Computation of safe overapproximation of program semantics:
some precision may be lost, but imprecision is always on the safe side.

5

Definitely
correct / in time definitely false

Definitely
correct / in time

potentially
false

Concrete
semantics

Abstract
semantics

© AbsInt GmbH 2012

Aerospace: DO-178B/DO-178C

 ―Verification is not simply testing.
Testing, in general, cannot show the absence of errors.‖

 ―The general objectives of the software verification process
are to verify that the requirements of the system level,
the architecture level, the source code level and the executable
object code level are satisfied, and that the means used to satisfy
these objectives are technically correct and complete.‖

 The DO-178C is a revision of DO-178B to bring it up to date with respect
to current software development and verification technologies, e.g. the
use of formal methods to complement or replace dynamic testing:
theorem proving, model checking, abstract interpretation.

6

© AbsInt GmbH 2012

Automotive: ISO-26262

7

Criticality levels:

A (lowest) to

D (highest)

Excerpt from:

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

© AbsInt GmbH 2012

Automotive: ISO-26262

8

 Importance of static verification emphasized:

Excerpt from:

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

© AbsInt GmbH 2012

Automotive: ISO-26262

9

Excerpt from:

Final Draft ISO 26262-6 Road vehicles – Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

© AbsInt GmbH 2012

10

Excerpt from:

IEC-61508, Edition 2.0. Functional safety of electrical/electronic/programmable

electronic safety-related systems – Part 3: Software requirements

E&E Systems: IEC-61508 – Edition 2.0

© AbsInt GmbH 2012

11

Criticality levels:

SIL1 (lowest) to

SIL4 (highest)

Confidence levels:

R1 (lowest) to

R3 (highest)

E&E Systems: IEC-61508 – Edition 2.0

© AbsInt GmbH 2012

Railway: prEN-50128

12

Excerpt from:

DRAFT prEN 50128,

July 2009

© AbsInt GmbH 2012

13

Industry Perspective

 In most current safety standards variants of static analysis are
recommended or highly recommended as a verification technique

 Abstract-interpretation–based static analyzers are in wide industrial
use: state-of-the-art for validating non-functional safety properties

 Examples:

 Static WCET analysis (aiT)

 Static stack usage analysis (StackAnalyzer)

 Static runtime error analysis (Astrée): proving the absence of erroneous
pointer dereferencing, out-of-bounds array indices, arithmetic overflows,
division by zero,…

 aiT application examples:

 safety-critical Airbus software in many airplane types (A380,…)

 by NASA as an industry-standard tool for demonstrating
the absence of timing-related software defects in the
Toyota Unintended Acceleration Investigation (2010)*

* Technical Support to the National Highway Traffic Safety Administration (NHTSA) on the

Reported Toyota Motor Corporation (TMC) Unintended Acceleration (UA) Investigation.

© AbsInt GmbH 2012

The Static Analyzer Astrée

 Crashes or undefined behavior
due to runtime errors are bad

 Too many false alarms are bad

 Astrée detects all runtime errors
with few false alarms

 Array index out of bounds

 Integer division by 0

 Invalid pointer dereferences

 Arithmetic overflows and wrap-arounds

 Floating point overflows and invalid operations
(IEEE floating values Inf and NaN)

 User-defined assertions, unreachable code, uninitialized variables

 Elimination of false alarms by local tuning of analysis precision

14

© AbsInt GmbH 2012

The Zero Alarm Goal

 With zero alarms, the absence of runtime errors
is automatically proven by the analysis, without
additional reasoning

 Design features of Astrée:

 Precise and extensible analysis engine, combining powerful abstract
domains (intervals, octagons, filters, decision trees,…)

 Support for precise alarm investigation

 Source code views/editors for original/preprocessed code

 Alarms and error messages are linked: jump to location with one click

 Detailed alarm reporting: precise location and context, call stack, etc.

Understanding alarms Fixing true runtime errors + Eliminating false alarms

 The more precise the analysis is, the fewer false alarms there are.
Astrée supports improving precision by

 parametrization: local tuning of analysis precision

 making external knowledge available to Astrée

 specialization: adaptation to software class and target hardware

15

© AbsInt GmbH 2012

Types of Runtime Errors (1/2)

 Runtime errors causing undefined behavior (with unpredictable results)

 Modifications through out-of-bounds array accesses, dangling pointers,…

 Integer divisions by zero, floating-point exceptions,…

 Example:

 Astrée’s reaction:

 Raise alarm in order to signal a potential runtime error

 Continue analysis for scenarios where the runtime error did not occur

 If the error definitely occurs in a given context,
stop the analysis for this context and report the error

16

int main() {

int n, T[1];

n = 2147483647;

printf("n = %i, T[n] = %i\n", n, T[n]);

}

PPC MAC: n=2147483647,T[n]=2147483647

Intel MAC: n=2147483647,T[n]=-1208492044

32-bit Intel: n=2147483647,T[n]=-135294988

64-bit Intel: Bus error

© AbsInt GmbH 2012

Types of Runtime Errors (2/2)

 Runtime errors causing unspecified, but predictable behavior

 Integer overflow

 Invalid shifts <<, >>, or casts,…

 Astrée’s reaction:

1. Raise alarm in order to signal a potential runtime error

2. Continue analysis with an overapproximation of all possible results

 No artificial restrictions on value ranges, so the results are always safe

17

volatile short x,y;

__ASTREE_volatile_input((x, [-1,1]));

__ASTREE_volatile_input((y, [-1,1]));

void main()

{

short z;

z = (short)((unsigned short)x +

(unsigned short)y);

__ASTREE_assert((-2<=z && z<=2));

}

Overflow detected in
signed short → unsigned short
conversions

Nevertheless:
precise range for z on two's complement

hardware (configurable)

© AbsInt GmbH 2012

Astrée Domains

 Interval domain, Octagon domain

 Floating-point computations:
 Control programs often perform

massive floating-point computations

 Rounding errors have to be taken into
account for precise analysis

 Astrée approximates expressions
on variables Vk as

 Rounding modes can be changed
during runtime

 Astrée considers the worst case
of all possible rounding modes

 Further value domains: Decision tree domain, Digital filter
domain, Clock domain, Memory domain,...

18

#include <stdio.h>

int main () {

double x; float a,y,z,r1,r2;

a = 1.0; x = 1125899973951488.0;

y = x+a; z = x-a;

r1 = y - z; r2 = 2*a;

printf("(x+a)-(x-a) = %f\n", r1);

printf("2a = %f\n", r2);

}

Output:

(x+a)-(x-a) = 134217728.0000

2a = 2.0000

Astrée result:

r1 in [-1.34218e+08, 1.34218e+08]

r2 = 2.0

k

kkk Vbaba],[],[00

© AbsInt GmbH 2012

Analysis Process

1. Preprocess the code

 by adapting the build process, or

 from the built-in Astrée preprocessor

2. Define appropriate analysis options

3. Run the analysis

1. Investigate the alarms

2. Fix true errors

3. Use Astrée directives
to fine-tune the analyzer

4. Generate final reports

19

© AbsInt GmbH 2012

Real-World Applications

 Astrée has been used successfully for industrial
avionics, automotive and space applications

 Success stories include:

 132 000 lines of C code. 1200 false alarms on first run.
After correction and parametrization: 11 false alarms.
Analysis runtime: 110 min on a 2.4 GHz PC, 1 GB RAM.

 200 000 lines of preprocessed C code. 467 alarms on
first run. After correction and parametrization: zero
alarms. Runtime c. 6h on a 2.6 GHz PC, 16 GB RAM.

 755 197 lines of preprocessed C code. After correction
and parametrization: zero alarms. Runtime c. 6h on
Intel Core2Duo 2.66 GHz, 8 GB RAM.

20

© AbsInt GmbH 2012

Qualification Support Kits

 Report Package
 Operational Requirements Report:

lists all functional requirements

 Verification Test Plan:
describes one or more
test cases to check each
functional requirement

 Test Package
 All test cases listed in the

Verification Test Plan report

 Scripts to execute
all test cases including an
evaluation of the results

21

© AbsInt GmbH 2012

Summary

 Current safety standards require demonstrating
that the software works correctly and the relevant safety goals
are met, including non-functional program properties.
In all of them, variants of static analysis are recommended
or highly recommended as a verification technique.

 Abstract-interpretation–based static analysis tools compute results
which hold for any possible program execution and any input
scenario. They are in wide industrial use and can be considered
state-of-the-art for validating non-functional safety properties.

 aiT Worst-Case Execution Time Analyzer

 StackAnalyzer for proving the absence of stack overflows

 Astrée for proving the absence of runtime errors

 These tools enhance system safety
and can contribute to reducing the V&V effort.

22

© AbsInt GmbH 2012

23

info@absint.com

www.absint.com

